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e mo i ABSTRACT

A new two-dimensional ta-adaptive algorithm utilizing the iterative Toeplitz

approximation method is presentd. This algorithm provides a robust and efficient

means for accurate estimation of - D autoregressive parameters representing spatially

variant data arrays. Its convergence performance is comparable to that of the 2-D

Recursive Least Squares (RLS) algorithm but is computationally more efficient. The

savings in computation is realized by reducing the size of the matrix to be inverted

when solving the AR model normal equations. The ability of the algorithm to accu-

rately estimate the model parameters using very small data sets and various window-

ing schemes are evaluated. Spectral estimates are compared for quarter-plane (QP),

nonsymmetric half-plane (NSHP) and combined-quadrant (CQ) regions of support.

Additionally, the algorithm is tested in noise cancellation and line enhancement ap-

plications using image arrays. This algorithm may be implemented for data-adaptive

image processing or coding and for applications requiring 2-D spectral estimation.
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I. INTRODUCTION

A. PARAMETER ESTIMATION OF DATA-ADAPTIVE ARRAYS

Two-dimensional (2-D) autoregressive (AR) modeling provides a means for the

spectral estimation of signals received by an array of spatially distributed sensors.

Additionally, the 2-D AR model parameters may be used to represent the original

signal in a compact manner resulting in compression of the data to be processed or

transmitted. This is particularly useful in many image processing applications. The

traditional least squares or Wiener filtering based 2-D AR parameter estimation [Ref.

1] provide accurate spectral estimates but require the the inversion of a relatively large

autocorrelation matrix. This is undesirable since matrix inversion is computationally

expensive. Iterative methods, using a Toeplitz approximation algorithm, have been

suggested [Ref. 2, 31 as an alternative to the direct Wiener filter solution. The itera-

tive Toeplitz approximation method has proven to be an effective means to estimate

the parameters of fixed data arrays without having to invert the correlation matrix.

This method is particularly useful when data arrays of limited size must be processed.

The results obtained using iterative methods to obtain the AR parameters of

fixed data arrays suggest that these methods may be used to some advantage when

estimating parameters adaptively. Adaptive parameter estimation is necessary in

many digital signal processing applications where the data is non-stationary. In these

applications, real-time or near real-time processing is often desirable. This requires

that any algorithm used must be computationally efficient and be capable of providing

accurate estimates obtained from a minimum of data. This thesis addresses the

implementation of the iterative Toeplitz approximation method for 2-D parameter



estimation of non-stationary data. It is shown that this algorithm can be efficiently

implemented to obtain accurate estimates from very small data arrays.

B. EXPLANATION OF NOTATION

All rectangular matrices are denoted by a boldface, captial letter, e.g., R. Col-

umn vectors are designated by a boldface lowercase letter, for example: x. Occasion-

ally, a vector created temporarily for the development of a mathematical expression

will be represented by a lowercase, boldface, greek letter. An example of this would

be the vector a. A special operator matrix will be represented by a calligraphic cap-

ital letter, such as F. Scalar values are generally represented non-boldface lowercase

arabic or greek letters, e.g., a or A. Captital letters such as A or P are used to rep-

resent a variety of values or expressions. These include anything from a polynomial

to the dimension of a matrix. The symbol T *9 reserved to indicate the transpose of

a vector or matrix.

C. THESIS OUTLINE

The following describes the organization of the remainder this thesis. Chapter

II serves as an introduction to the problem of 2-D AR modeling and parameter esti-

mation. Particular attention is given to the formulation of the normal equations for

quarter-plane (QP) and nonsymmetric half-plane (NSHP) regions of support. This

chapter concludes with a description of the least squares algorithm and direct in-

version method of solving the normal equations. This serves as the foundation for

Chapter III which extends the concept of solving normal equations using the itera-

tive Toeplitz approximation method to derive parameter estimates referred to as the

fixed data method. Chapter IV proceeds with the development of the data-adaptive

algorithm using Toeplitz approximation. Two-dimensional AR spectral estimation

is discussed in Chapter V, along with a comparison of results using both fixed and

2



adaptive iterative methods for spectral estimation. Additionally, a discussion of the

use of the data-adaptive algorithm for noise cancellation and line enhancement of

image arrays is provided in Chapter VI, with experimental results. Conclusions and

recommendations for future work are found in Chapter VII.

3



II. 2-D AUTOREGRESSIVE MODELING

A. OVERVIEW

This procedure assumes a stationary (homogeneous) random process x[ni, n 2]

that is the response of an AR model ei-cited by a white noise input wini, n2] having

a variance o.2 The AR model as shown in Figure 2.1 may be described as an all pole
0

wnn2),w 2) x(nin 2 )

Figure 2.1: AR model excited by white noise.

filter with the transfer function

H(wlw 2 ) = 1 + E ,(k,2EA) a(k1 , k2)e- j ( kl+2k2) (2.1)

where A is the region of support over which the parameters a(ki, k2 ) are non-zero.

The difference equation for the system that generates x[ni, n2] can be written as

x[ni, n 2] = - a(i,j)x[n, - i, n 2 - j] + w[ni, n 2]. (2.2)
(ij) EA

A linear set of equations for the filter coefficients a(i, j) may be formed by multiplying

both sides of (2.2) by x[n, - 11, n2 - 12] and computing the the statistical expectation

of the resulting expression [Ref. 41. This leads to the following expression called the

normal equation

R,[11, 12] = - a(i,j)R.[l, - i,1l -2 , (2.3)
(ij) EA

4



for 11,12 > 0. The coefficients a(i,j) can be derived from this normal equation. It

should be noted that the structure of the normal equation depends on the region of

support A. A region of support may have any shape, but th6 most commonly used

are the quarter-plane and nonsymmetric half-plane.

1. Quarter-Plane Support

The most straightforward region of support is the quarter-plane. A region

A is considered to have quarter-plane (QP) support when a(ij) has non-zero values

in one quadrant only as shown in Figure 2.2. For this case the normal equation has

00 0 0

0 0 0 . 1 0

Figure 2.2: The quarter-plane region of support.

the form
P1 -1 P 2 -1

R.[l1, 121 = E a(i,j).[Il - i,l -j], (i,j) (0,0) (2.4)
i=0 j=0

where11 = 1,2,... ,P1 -1 and 12 = 1,2,...,P 2-1 with P1 and P2 being the dimensions

of A. If it is assumed that a(0, 0) = 1, we may express (2.4) in block matrix forn as

Ro R- 1  R- 2  ... R-p 1+" ao C(o)
R, R R-1 " R*-*P1 +2  al 0
R2 R, Ro ... R-p 1 +3  a 2  = 0 (2.5)

I . ! I

RP,-1 RpI-2 RP,-3 ... RO ap,-1 0

51
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Each block RM of this matrix is given by

R(M,O) R(M,-1) ... R(M,-P 2 + 1)

RTM= R(M, 1) R(M,O) ... R(M,-P 2 +2) (Rm= - (2.6)

R(M,P2 -1) R(M, P2 - 2) ... R(M,O) ]
while the coefficients are aM = [a(M,0) a(M, 1) a(M,2).. .a(M, P2 - 1)]T and the

error variance vector is g(O) = [a.2 ... 0JT . The blocks RM along the diagonals of the

autocorrelation matrix R are equal and the diagonal elements of RM are equal, thus

R is Toeplitz block-Toeplitz.

2. Nonsymmetric Half-Plane Support

A region A with non-zero a(ij) as shown in Figure 2.3 is considered to

have nonsymmetric half-plane (NSHP) support. The normal equation for this case

DP2L 0 0 0 0

Figure 2.3: The nonsymmetric half-plane region of support.

must be modified to account for non-zero a(O,j) in the fourth quadrant. This may

be written as

L2 +P2-1 P1 -1 P2 -1

R.[l 1 , 12] = 2 a(O,j)R.[l, 12 -j] + a(i,j)R[l - i, l2-j, (2.7)
j=1 i=O j=O

6



where (i, A3) 0, 11- 0, 1,2,... , - 1 and

12 0,1,2,...,L2+P2-1, forl 1 =0
L 2,L 2 +1, L 2 +2,...,L 2 +P 2 -1, for 11 0

The dimensions of A are given by P and P2 and L 2 is a negative number as defined

in Figure 2.3. As in the quarter-plane case, if we let a(0, 0) - 1 we may write (2.7)

in block matrix form as

Ro R-1 R...P +2 a, 0

2 R R1o R-p:+3 a2 [ (2.8)
Rp,R,-2 RPI-_s ap_ -0

... Rio.. 1

The blocks A0, AM and RM each have different forms. The diagonal block

1Ro has the form

R(o,0) R(0,-1) ... R(0,-L 2 - P2 + 1)"
A R(0, 1) R(O,0) ... R(O,-L 2 - P2 + 2) (2.9)

R(0,12 +P 2 - 1) R(0,L2 -- P2 -2) "" R(0,0)

the blocks _M = m in the first row and column m- be written as

R(M, -L 2) R(M, -L 2 - 1) ... R(M, -L 2 - P2 + 1)
R(M, -L 2 + 1) R(M, -L 2 ) ... R(M, -L 2 - P 2 + 2): : ". : ,(2.10)

R(M,-L2 + A - 1) R(M,-L2 + P - 2) ... R(M,0)

and the remaining blocks RM are given by (2.6).

The model parameter vectors are given by

ao = [a(0, 0) a(0, 1) a(0, 2)... a(0, L 2 + P2 - 1)]T

and

aM = [a(M, L2 ) a(M, L 2 + 1) a(M, L 2 + 2)... a(M, L 2 + p2 -1)

7



for M - 1,2,..., P, - 1. The error variance vector 9(0) = [a2 0... 0]T. Except for the

upper diagonal block (2.9) and top and left most blocks (2.10), the NSHP autocorre-

lation matrix is block-toeplitz with each block being toeplitz as well. Quarter-Plane

support can be considered a special case of NSHP support with L2 = 0.

B. SOLVING THE NORMAL EQUATIONS BY DIRECT INVERSION

The normal equations also arise in the 2-D linear prediction problem. When

solving the normal equations, the objective is to find the parameters which mini-

mize the prediction error [Ref. 5]. It is frequently more convenient to describe the

formulation of the normal equations in terms of linear prediction.

In the 2-D least squares problem, the error between the random process x[nl, n 2]

and its estimate [n,, n 2] is given by

efrin 2] = xtnin 2] - jn1 ,]n2] (2.11)

or in expanded form as

e[ni,n2 l] = x[n,n 2] + a(i,j)xfnl - i, n 2 -j], (i,j) 9 (0,0). (2.12)
(ij) EA

The objective of the least squares method is to minimize the squared errors from a

particular set of these terms [Ref. 4]. If we let a(0, 0) = 1, we can express (2.12) as

e(ni,] -= E E a(i,j)x[nl - i,n 2 - (2.13)
(ij) EA

which is compactly represented in vector notation as e = Xa. The error ejn l ,n 2]

is computed for each position of the filter, then normal equations are formed by

multiplying both sides of (2.13) by XT and applying the orthogonality principle [Ref.

51. This results in

Ra=6 (2.14)

8



where R = XTX and the error variance vector £ = XTe - [E(o)T, 0,..., 0]T with

£(0) = [a, 0,... , 0]T . The matrix X may be defined as

X= O X' =[ X1 ... xp1 -1 (2.15)

and the model parameters may be given by a = [1 a' ]T. The parameter estimates

are obtained from (2.14) by muliplying both sides of the equation by the inverse of

R which may be written in expanded form as

a' = -(x1rx1)-xXo. (2.16)

This is referred to as the direct inversion method.

The preceding discussion assumes that R is Toeplitz block-Toeplitz. This true

for the case where the autocorrelation method [Ref. 5] is used to form the correlation

matrix or when the theoretical correlation is known. In practicality, however, param-

eter estimates must be obtained from relatively small sets of finite data. In this case,

it is often desirable to compute R using the covariance method. This results in a

block autocorrelation matrix R with non-Toeplitz blocks RM [Ref. 2]. The rows of

the matrix X are the elements of the random process covered by the filter mask for

each point being estimated as the mask is moved over the data. In the covariance

method the filter mask is not moved past the boundaries of the region of support.

This means that when QP support is used, X will be of dimension PP 2 x P1P where

P1 and P2 are the dimensions of the data array accessible to the filter mask. For

example, using a 3 x 3 (nine element) filter mask to form the normal equations of an

8 x 8 data array would result in an X matrix with dimension 36 x 9. It should be

noted that P = P2 = 6, since two rows and two columns of data cannot be estimated

by the filter.

The preceding discussion provides the basis for the subsequent work in this

9



thesis. The next chapter will addresses this same problem using the iterative Toeplitz

approximation method.

10



III. ITERATIVE TOEPLITZ
APPROXIMATION ALGORITHM

The major drawback of the least squares method described in the previous

chapter comes from the requirement to invert a relatively large autocorrelation ma-

trix. This is undesireable since matrix inversion is computationally expensive. In

this chapter we present an iterative method for solving the normal equations which

does not involve the direct inversion of the correlation matrix to obtain the model

parameters. This method is then extended to the case where the covariance method

is used to form the correlation matrix and the normal equations are solved iteratively

using Toeplitz approximation.

A. THE ITERATIVE SOLUTION OF THE NORMAL EQUATIONS

An alternative to direct inversion is to take advantage of the near Toeplitz-

block-Toeplitz structure of the autocorrelation matrix and successively partition the

normal equation [Ref. 21. This partitioning permits the estimation of parameters

while requiring the inversion of a matrix that is significantly smaller than the original

autocorrelation matrix. The following discussion develops the iterative solution for

QP and NSHP regions of support.

1. Quarter-Plane Support

In order to iteratively solve the QP normal equations we must begin by

dividing both sides of (2.5) by a2. This results in a modified normal equation given

11



by [ Ro RI1  R- 2  ... R-pl+,[ 1 [&(O)1

R, Ro R-1 ... R-,+2 1 0
R2 R Ro "-" R-p,+3 s 0 (3.1)

Rp1 .l Rp1 2 Rp1 3 ... Ro a .-1  0]

where C(O) = [100, ,0 ]T and a' ... aj for i - 1,2,..., P1 - 1. We now partition

the normal equation (3.1) as follows

G, hi al[h T ] [1api] (3.2)

where

R , R o R -12  ... 1-,+
G 1 = R, Rt o R-,+4 ,(3.3)

R -2 , - .1  ... RO J +

hlT=[Rp1.. R,-2 RI-3 ".. R1 (3.4)

a a"1 4 ... aP'_12]T, (3.5)

and

- [S( ° )T  
0 T ... oT]T (3.6)

We may now form a set of coupled iterative equations by defining an op-

erator Jr, which is given as
. [GT-' 0 ] ' (3.7)

and using this operator to premultiply both sides of (3.2) to yield

a, = G-11-1 - hi a', 1 ,], (3.8)

and

ap,= -Ro-hTal (3.9)

12



Equations (3.8) and (3.9) suggest an iterative solution and can be written as

(k) 1= - hi apI'(k- (3.10)

and

a,1(k) _Rl;hTa k*-) (3.11)ap,~ --- 1 3.1

which provide a means to solve the normal equation (3.1) iteratively.

It can be noted that the submatrix G, is nearly the same dimension as

the original correlation matrix. This means that the inversion of G, provides little

advantage, computationally, over the direct inversion method. It is clear, however,

that further partitioning of G, will decrease the required complexity. Partitioning of

G, yields
[G2 h 2  k2  2

[~~R. 0H;2 L 2 (3.12)
where [ Ro R-1  R-2  ... R-p, +3

R, Ro R -1 .. R-P, +4 '
G2 R 2  Ri Re ... R-p,+s (3.13)

: . . .. . I

Rp- 3 Rp1.- 4 Rp,-5  H.. Ro

h2=[RP,-2 RP, -3 RPI-4 ---.RP- , (3.14)

Ct' -" [1 a
T  

a'1 a2
T'j 

... aP'- 3 IT (3.15)

and

I=f[C(O0T 0 T  ... oT*r  (3.16)

As before, both sides of (3.12) are premultiplied by an operator defined by

1r Gi 0 (3.17)

13



which results in

S2= Gill - h 2 a',-2" (3.18)

and
a';, -R-h a2  (3.19)

P-22a

Equations (3.18) and (3.19) may be solved iteratively in the same manner as (3.8)

and (3.9). This solution is expressed as

a2k) = G 1'[-y I - h2 a_ -2 (3.20)

and

a~2 2  h2 2 (3.21)

This partitioning process may be continued until Gp.-. - Ro. This will

result in a partitioned normal equation given by

[Gp21... hp-I..u raPI1i 1-[vP1](3.22)

where hp,,-1 = RIc,a p_ a- and -y p-1 = C(0).

Premultiplication of both sides of (3.22) by an operator 'P 1 will result

in the iterative solution

ao) = - al + +... +'(k-) (3.23)

and
a-) -12 - (k-1) (3.24)a'(k") = -lRIE[a,P(k -1) + R.a('k*l) + ... + "--,i+ 2a,.i-] . 3.4

For this case the operator matrix is given by

T = 1 0
0 4 0 (3.25)

14



At this point in our development, we can combine the preceding iterative

solutions from the successive levels of partitioning into a set of compact iterative

summations
Pi -1

an(k) =an(°) - R - ' R (k-1), (3.26)

a"M 
PI-I

a ' -- R E Rj- iaN(k 1) , (i 0 j) (3.27)
i=0

where a (° ) = p ,E(0) a"(0) = _R. 'Ria(O), and j = 1,2,...,P 1 - 1. The index of

iteration is k and a:' are the P2 x 1 parameter vectors. The solution of (3.26)-(3.27)

requires O(P2P2K) multiplications, where K represents the number of iterations

to converge to the true parameter values. An additional PIP2 multiplications are

required to compute the initial parameter estimates a"(° ) for j = 1,2,...,P 2 - 1.

This results in total multplications of O(PP2K + P1 P2). Depending on the number

of iterations required to converge to the true parameters, this total compares with the

algorithms of Wax and Kalaith (Ref. 6] and Akaike [Ref. 71 which require O(PP2)

operations. When large arrays are used this represents a noticeable savings over direct

inversion which requires O(P P 2) multiplications.

2. Nonsymmetric Half-Plane Support

The derivation of the iterative NSHP solution follows a procedure of suc-

cesive partitioning similar to that of QP support. However some differences exist due

to the asymmetry of the autocorrelation matrix consisting of three different types

of block matrices. This asymmetry results in a somewhat modified set of recursive

summations given by

-"i(k) = -(O) - P,- k1

P,-1a1(k )= ()/-1 (_,a,,(), (3.29)
i--1

a ) = _(- p R_,a,,(k-), (2 (3.29)
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where "(o) = 1 (o), a"() = _R j1 R o', andj = 1,2,...,P 1 -1. The index

of iteration is k and a.' are the P2 x 1 parameter vectors. As with QP support, The

solution of (3.28)-(3.29) requires O(P P2K) multiplications, where K represents the

number of iterations to converge to the true parameter values.

B. THE ITERATIVE SOLUTION USING TOEPLITZ APPROXIMA-

TION

The discussion of the previous section assumes an autocorrelation matrix with

Toeplitz-block-Toeplitz structure. In most cases the autocorrelation matrix must be

formed from a limited, and possibly very small, amount of sampled data. In this

situation, it is best to use the covariance method to estimate the correlation matrix

to reduce the bias in the estimate. However, since this method does not have Toeplitz-

block-Toeplitz structure, it is necessary to modify the iterative algorithm described

above.

1. Forward Iteration

For first quadrant QP support, the covariance estimate R has the form
SRao R Ro.2 ... RoA-1,

RI,o R1j,1 R1,2 R.. 1,p - 1

R 2,0  R 2,1  R2,2 R 2,p -1 (3.30)

Rp.-, 0  R,., Rpl 1 ,2 "'" Re _l 1J

A proven procedure [Ref. 8] that can be used to form the Toeplitz approx-

imation is to first average the diagonal blocks Rij, i = j and then form a Toeplitz

T matrix from this averaged block R.,. by averaging its diagonal elements. The

diagonal elements of T can be obtained as follows

1 . i-
t(i) = P-- R.9(i + j j) (3.31)

where i = 0, 1,...,P 2 - 1.
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We may now proceed to succesively partition the normal equations in the

manner outlined in the previous section. The first partitioning leads to the iterative

equations

ik)=G-'fyt 1 - h, ap,~), (.32)

and

-1~k TC(k-1)p- -- -- 1, 1 .. h~a (3.33)

The diagonal block Rp-~p- may be written as

Rp 1p 1= T + Ap, ... ,p, -.1  (3.34)

where Ap,p 1 .. is the difference between Rp I~,- and the Toeplitz approximation

T.

Substituting (3.34) into (3.33) modifies the recursion to give

(k G1)iaF- (3.35)

and

ap,-1 = -T-1Ap1 1 ,p1 .. 1 4'(,k1) - T-1hak. (3.36)

The final expressions resulting from the successive partitioning are then

Ck()I=G1I[y 1-hp, -1a" 1 ) (3.37)

and

al -Rjiihp 1 ... aPjj- (3.38)

where ap-= ao,Gp.... = Ro,o, and hp,-... = R0 ,1 . The diagonals R3,, may be

rewritten as

Rj~j T + j,_,(3.39)
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Now, substituting (3.39) into (3.38) results in

(k) =G I_ [, hpG-.1 a, (k-1)] (3.40)
P -1 - - p)-1 -- 1

and
11,(k) - - ,(k-1) - -To ,,(k-1)(.1

a, _T1-,_ Al)l' - T 1h1j1 (3.41)

Finally, combining the succesive iterative equations results in our solution to the

normal equations using the forward iterative algorithm for the QP case, which takes

the form
11(k) E( - 11(k-P1-1
a(. a( _-1o,oao(k~1) - T -1 2 Ria,(-1) (3.42)

i=1

P -1
- -1Ai"a (kl - T , (3.43)

i-0
i~kj

where a (0) - T-1 9 ° , a"'(o) = T1Rjoaf() and j = 1,2,...,P, - 1. The forward

iteration will provide parameters for the first quadrant spectral estimate.

2. Backward Iteration

A filter mask may have quarter-plane support in any two quadrants. A sec-

ond quadrant estimate exists for the quadrant adjacent to either side of the quadrant

designated to be the first quadrant. The Hermitian symmetry and Toeplitz-block-

Toeplitz nature of the autocorrelation matrix causes the estimates produced from

diagonally adjacent quadrants to be identical [Ref. 91.

The second quadrant AR parameters b(i,j) may be estimated from the nor-

mal equations using the backward iterative Toeplitz approximation. When b(0, 0) = 1

the second quadrant normal equation is given by

- 110. R-0,2 ... Ropb,, 0
R1,o R1,1 R1,2 ... R 1,p- 1  bp, -2 0
R2,0 R2,1 R2,2 ... R2,P,-l [bp,-3 0=  (3.44)

Rp, 1 ,o Rp, 1,1 Rp1 - 1,2 ... Rp,-_1^-1 L bo J .
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where Rj = RT., 6(0) = [100... , 0 ]T and

bT = (1/lo 2)[b(k, 0), b(k, 1), b(k, 2),... ,b(k, P - 1)]

It may be noted that the second quadrant autocorrelation matrix is identical to that

of the first quadrant. However, the parameter estimates b(ij) axe not generally the

same. The estimation of the backward parameters is computed iteratively in the same

manner as the forward parameters, but, the backward method differs in the way that

the normal equation is partitioned. In this case the partitioning begins at the upper

left diagonal block and continues until the G matrix consists of only the lower right

diagonal block. The Toeplitz approximation T is identical to that of first quadrant

support.

The combined backward iterative equations, which are similar to those for

the forward iteration, can be written as

b(k)0) ,-^t(k-1) T- 1 (k-1)
b(O) - T1Apj~j~j-jbO - 1,P2-1-i P1 - 1- i

P1 -b~-T-1 p,,p 1~b 1bk) - T 1 1: Rp 1 .1 ,p -b1 _i (3.45)
i1b~k) T- ^.b ... l) -T-

1  b(k-1 ) (.6

i0

where b(O = T-1 E(o), b(°) = T-1Rp,, _ibo) and j = 1,2,...,P 1 - 1. The first and

second quadrant parameters are used to find the combined-quadrant spectral estimate,

which is discussed in Chapter V.

3. Iterative Method for NSHP Support

The iterative Toeplitz approximation method may be used to estimate the

parameters of arrays with nonsymmetric half-plane support. As shown previously the

NSHP autocorrelation matrix has an asymmetric structure which can be expressed
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Ri,0  Ri,1 R1,2  "'" R.,p-.

R 2,0  R 2,1  R 2,2  ... R 2,p, - 1  (3.47)

HAPI-1 ,0 RP.-I,1  RPI-1 ,2  RP,-1,Pj-1

The dimensions of the top most and left most blocks are reduced by L 2 rows and

columns, respectively. As in the previous cases the iterative process begins with

forming the Toeplitz approximation of H..,,. In the NSHP case, however, the upper

left main diagonal block is not included in the average becuase it does not have

the same dimension as the other main diagonal blocks. Thus, it is necessary to use

the elements of the upper left main diagonal block to create a separate Toeplitz

approximation designated as T.

The normal equation is successively partitioned as described in the previous

sections. At each stage of the partitioning, the blocks along the main diagonal are

expressed as the sum of the Toeplitz approximation and a difference matrix. The

iterative summations are given by

A0 (0) - -l 0,0  - - T1  0a(k-1) (3.48)

i=1

P1 -1" (k) -- 11_(k-1) A _1
a =-T-1 jja - T-1g(, ( -l) - T- 1  .,Ia(k - ) (3.49)

is0

where =x(0) =r..(o) a - T- 1 j,o 0o) andj=l,2,...,P-1.

C. SUMMARY

It is clear that iterative methods have a computational advantage over the di-

rect inversion method. This has been shown for the Toeplitz-block-Toeplitz case and

extended to the case where Toeplitz approximation is used to compensate for the

non-Toeplitz nature of autocorrelation matrices formed using the covariance method.
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Generally, the matrix that must be inverted using the iterative method has the di-

mension of a single block in the block matrix. This corresponds to the filter order or

mask size. The mask size will vary with the order necessary for accurate AR mod-

eling of the sampled data, but filter masks that range from 3 x 3 to 6 x 6 will be

sufficient for most applications. Although other methods may exhibit faster conver-

gence to the true parameters, they do so with greater computational complexity. The

iterative methods provide an approximation much sooner. Additionally, the iterative

methods are guaranteed to converge when the block matrix is symmetric and positive

definite [Ref. 21. This property is important when extending the iterative Toeplitz

approximation algorithm to the data-adaptive case which is introduced in the next

chapter.
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IV. DATA-ADAPTIVE ITERATIVE TOEPLITZ
APPROXIMATION ALGORITHM

A. OVERVIEW

The necessity for adaptive filtering techniques arises when it is desired to process

signals that result from an environment of unknown statistics [Ref. 10]. There exists a

broad class of problems that fall into this category, these include such diverse fields as

sonar, radar, image processing, seismology and communications. In general, adaptive

filters provide a significant improvement in performance over fixed coefficient filters

designed to operate on data with unknown statistics. Additionally, the use of adaptive

fiters makes possible new signal processing capabilties that would not be available

otherwise.

One distinct advantage associated with adaptive filters pertains to their ability

process data on-line. This is desirable for many applications such as autoregressive

spectrum analysis, detection of a signal in noise, adaptive noise cancellation and line

enhancement.

Two-dimensional adaptive fiters are used to process data obtained from spa-

tially variant data arrays. The most successful algorithms currently implemented for

this purpose include the 2-D least mean square (LMS) and recursive least squares

(RLS) algorithms. Both of these algorithms have been derived from the 2-D Wiener

filter and method of least squares [Ref. 11]. With this in mind, it follows that the

iterative method for fixed data may be successfully extended to operate on spatially

variant arrays. The remainder of this chapter describes the development of the data-

adaptive iterative Toeplitz approximation algorithms and some considerations that

apply when using this algorithm.
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B. THE DATA-ADAPTIVE ALGORITHM

The data-adaptive Toeplitz approximation algorithm is based on the same suc-

cesive partitioning described for the fixed data case. The algorithm becomes adaptive

in nature when the autocorrelation matrix R, is updated for each shift n of the filter

mask. This yields a continuously updated set of AR parameter estimates. Compu-

tation of AR parameter estimates begins with the first iteration [Ref. 12]. As in the

fixed data case, only the approximated Toeplitz matrix T is inverted. Computation

time is shortened further by the fact that R, is computed only from data covered

by the filter mask, which amounts to taking the outer product of a PP 2 x 1 vector

where P1JP2 is equal to the number of filter coefficients. The data-adaptive form of

the combined iterative equations can be written as
P 1 -1a1(n, ) - - .(n-1) A - "(n-1)

-a(0) T;1A.,o,o.oa1 - T;1  R.,o,, (4.1)
S=1

a (,) -- 1- (n-) A ,1t(n-1)
= -T'A,jaj -, T- 1  , (4.2)

wmO

where a - T 1 ,(0) 1(0) To-'Roj,oa ( 0) and j = 1, 2,..., P, - 1. These can be

compared to (3.42) and (3.43) for the fixed data case. The initial parameter estimates

ao" are determined for the initial point being estimated and all subsequent parameters

aj" are a function of the parameters computed at the previous mask positions. The

backward equations, used for the second quadrant estimates, can be written as
P1 -1

b(°) - T1 An^_- 1 b T PRn,p,-,1-b (-1Li (4.3)

i=1

(n) P2--1
b ) =- T -'Z/n,P, _1-j,,_ _ .b,.,. ) - T -1 E R n,p,_ _i,,_j_jb ( i). (4.4)

imO

where b(0) = T;1 E(°), bo(0) = To-Rop,_ bl and j 2,..., P -1.

It should be noted that the only difference between the data-adaptive equations

and the fixed data equations is the the index of iteration which is n instead of k
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and the manner in which the autocorrelation matrix is formulated. In the data

adaptive case, the iteration proceeds with each shift of the filter mask or update of

the autocorrelation matrix which has the recursive form

R. = R.-I + xx• (4.5)

The P1P2 x 1 vector x,, is obtained by arranging the 2-D data covered by the filter

mask at each shift n = (n1 , n2) in a vector form. The diagonal blocks of R, are used

to form Tn in the same manner as the fixed data case.

As with the RLS algorithm and other recursive implementations of the method

of least squares, it is necessary to introduce a weighting or forgetting factor when

computing R [Ref. 10]. The forgetting factor is a scalar value that may be designated

as #(n) where n is the iteration number of the point being estimated. The weighting

factor 8(n) has the property that

O</(n)_<1, n=1,2,...,p, (4.6)

where p is the total number of points being estimated. The purpose of #(n) is to

ensure that data in the distant past is 'forgotten' which will make it possible for

the filter to adapt to statistical variations of the observed data when operating in a

non-homogeneous environment. A commonly used form of the weighting factor is the

exponential weighting factor which is defined as

,8(n) = A,,-n, n = 1, 2,. .. ,p, (4.7)

where \ is positive constant with a value less than 1. The quantity 1/(1 - A).can be

considered as an approximate measure of the memory of the algorithm. When A = 1

we have the ordinary method of least squares which corresponds to infinite memory.

By this reasoning, we may introduce a method of exponentially weighted least squares,
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where 0(n) is used as a weighting factor in the expression of the performance measure

[Ref. 10]
P

f(n) = E Ap-nle(n)1 2  (4.8)

where e(n) is the error defined by (2.12) at mask position (ni,n2).

To see how the forgetting factor is introduced in the recursion we must refer to

the original definition of the normal equation

Ra-- C (4.9)

where a is the vector of optimum parameters which results in the minimum value of

the performance measure f(n). The P1JP2 x PP2 autocorrelation matrix in this case

is defined by
p

Rn= E Ap-nX Xi (4.10)
n=l

We may now isolate the term of (4.10) that corresponds to n -p from the rest of the

summation on the right side of the expression to obtain
rp-,

In = A [ AP xI~x I ] + xxj. (4.11)

The term inside the brackets on the right side of (4.11) is actually the sum of the pre-

viously computed autocorrelation matrices R(n - 1), therefore we have the recursive

relationship

P., = AR.i + xx . (4.12)

The affect of 6(n) is apparent when (4.12) is expanded to give

TR1 = XlX:T

R 2 = AxIxI +x2x

R3 = xIxT + AX2 x + xX3

PC, =A"'-IXXT + "-2x 2x +... + xnx T (4.13)
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which clearly shows the decreasing contribution made by past data vectors when

A <1.

The choice of a value for A is dependent on the statistical nature of the data

being processed. Generally, if the data is random or uncorrelated it is undesirable to

use the past data to compute the current estimate, therefore a small value for A would

be the appropriate choice. Conversely, a value of A close to 1 would be desirable for

highly correlated data.

Since the statistical nature of the data is often not known a priori when using

data-adaptive filters, it is difficult to choose an optimum value for the forgetting

factor. A further modification of the recursive equation (4.12) has been implemented

for the data-adaptive iterative algorithm to address this problem. This modification

involves the application of a weighting factor to the current update of R.,,. This

weighting factor depends on the index of iteration n such that its value approaches

1 as n - 00. This biasing scheme causes the influence of the present data on the

parameter estimates to increase with the number of iterations. The modified recursion

is given by

R. =AR,,, + n n(4.14)

The weighting factor on the second term in (4.14) is added to provide a more gradual

shift of influence to recent updates than would be possible with only the A term

present. This factor is not as important when a highly correlated signal is processed.

C. SUMMARY

The adaptive Toeplitz approximation algorithm can be used to estimate param-

eters for the same regions of support as in the fixed data case. Additionally, various

schemes for pre-windowing or post-windowing the data may be employed to improve

the estimates. Other factors affecting the performance of the algorithm include the
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directional scheme for moving the filter over the data array and the criteria used to

determine convergence of the parameter estimates. This algorithm has been used for

spectral estimation, image noise cancellation, and line enhancement. Experimental

results involving these applications are presented in the next two chapters.
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V. 2-D AR SPECTRAL ESTIMATION

A. OVERVIEW

One application where the use of two-dimensional autoregressive modeling has

proven to be particularly advantageous is that of spectral estimation. The 2-D AR

model was derived in Chapter II. This model is used to find the 2-D AR power

spectral estimate !5,(w1,w2) which is given by [Ref. 41

Pf(wi,w2 ) = IH(w,W 2)12P, (5.1)

where P,, is the power spectral density of the input and H(wl, w2 ) is the transfer

function of the 2-D AR model. The input is white noise with a constant power

spectrum of amplitude v'.. Therefore, we can write (5.1) as

A.(Wi,W 2)= 0,. (5.2)/ =(. w2) =11 + E E(I,,k2eA) a(k l, k2)e-j(wlkl +toj2)j2"(5)

The key to finding the 2-D AR power spectral estimate is determining the the pa-

rameters a(ki, k2). The next section provides results of experimentation with the

data-adaptive iterative algorithm as used to find the parameter estimates of a 2-D

signal consisting of a sum of sinusoids in additive white noise. Results using the di-

rect inversion method and fixed data iterative Toeplitz approximation are provided

for comparison.

B. EXPERIMENTAL RESULTS

The performance of the algorithms discussed in the previous chapters is com-

pared by examining the estimated spectral densities computed from the parameters

produced by each method. Each algorithm has been used to estimate the parameters
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of the sinusoidal input array generated by

x(nl, n 2) = A, cos(27rfllnl + 2rf12 n 2 )

+A 2 cos(2rf 2ini + 27rf 22n 2 ) + w(ni, n 2) (5.3)

where amplitudes A, = A 2 = V12 and fij axe normalized frequencies in the range

(0 < fij < 0.5). The frequencies chosen are fil = f12 = 0.167 and f21 = f22 = 0.333.

Additionally, the data-adaptive algorithm is tested with off-set frequencies to evaluate

its peformance for that case. The noise term w(n 1 , n2) is zero mean and gaussian with

the variance ao scaled give a desired signal-to-noise ratio (SNR). The SNR (in dB)

is defined as [Ref. 41 A? (5.4)
SNR = 10 log10 E (5.4)

where N is the number of sinusoids present and A is the amplitude term. The SNR

is varied by holding Ai constant and adjusting the value of a.2. The algorithm's

performance using a 3 x 3 filter mask is evaluated for various sizes of input arrays

and the common regions of support, including combined-quadrant (CQ). The results

obtained using the data-adaptive algorithm are provided for the pre-windowed and

covariance methods. The data-adaptive algorithm is tested with SNR's of 10 dB and

0 dB. It should be noted that the surface plots in all figures have been rotated 90

degrees to show the separation of the spectral peaks more clearly. Contour plots are

provided to better judge the accuracy of the estimates. The axes of the contour plots

range from 0-30 which is taken from a 32 x 32 frequency domain array representing a

quadrant of a 64 x 64 point 2-D FFT output. The 32 x 32 array covers the frequency

range from 0 to 7r.

1. Estimates by Direct Inversion

The first case examined is that involving direct inversion of the autocorre-

lation matrix to find the least squares AR parameters from the normal equations. An
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8 x 8 input array was used with 1' quadrant quarter-plane support. The resulting

spectral density estimate is shown in Figure 5.1. This plot shows spectral peaks at

30

25

20

10-

5

5 10 15 20 25 30

Fl

Figure 5.1: Spectral estimate using direct matrix inversion; SNR=10 dB.

21.3 and 10.7 on the F1 and F2 axis respectively, which correspond to the normalized

frquencies fli = f12 = 0.167 and f21 = f22 f= 0.333 of the input data. The true

locations of the frequencies are indicated by crosses.

2. Spectral Estimates using the Iterative Method for Fixed Data

a. Quarter-Plane Support

Figure 5.2 shows the spectral density of x(ni,n 2 ) as estimated using

the fixed data iterative method with first quadrant QP support. As in the previous

case the frequencies estimated are very close to the true frequencies. It is interesting

to note however, that contrary to what might be expected, the quality of the estimate

appears to degrade as the number of iterations is increased. The estimate produced

after one iteration is clearly superior to the estimate obtained after ten iterations.
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This phenomenon is consistent with that experienced in the 1-D case where the

iterative solution would begin to diverge after a certain number of iterations in cases

with small data sets [Ref. 12].

U~U

"" "IS £"

| Sf t| 5 S 0R|Bli~~ l l

I III

Figure 5.2: Fixed Data, lot Quadrant QP Support, SNR=1O dB.

Results using second quadrant QP support proved to be generally

better for this placement of the sinusoids than those obtained from the first quadrant.

An example is provided in Figure 5.3.

b. Combined Quadrant Support

Spectral density estimates using QP support demonstrate a tendency

to distort elliptically. This distortion is evident in the first quadrant QP case shown

in Figure 5.2. A method to compensate for this elongation of the spectral peaks
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involves combining the first and second quadrant estimates [Ref. 13] to give

2uW (5.5)
[Pq= +P2]

The plots in Figure 5.4 indicate that this method yields accurate estimates. However,

despite some improvement, the elliptical elongation at the base of the spectral peaks

resulting from the influence of the first quadrant estimate is still quite noticeable.

10 Iteration@ i Iteration

20 30

25-2

is -- is

S $

-I L O0 0I 20 20 25 X

F F1

Figure 5.4: Fixed Data, Combined Quadrant Support, SNR=10 dB.

3. Spectral Estimates using the Data-Adaptive Iterative Method

a. Pre-Windowed Input Arrays

The input arrays were pre-windowed by adding P - 1 rows and

colimns of zeros to the top and left side of the array, where P is the dimension

of the filter mask. The purpose of pre-windowing the data is to czmpute the pa-

rameter estimates using all the input data. Figure 5.5 shows the spectral estimates
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for 1", 2 nd and CQ support with an 8 x 8 input array. In Figure 5.6 we present the

let SOlr~t Sd*d~ 06" 6g

S --
311

is 39 35 ns~a

• -- 1 F1 M .-. .

Figure 5.5: 8 x 8 input array (pre-windowed), SNR=10 dB.

spectral estimates when only 16 data points (4 x 4 array) were available. The spectral

estimates obtained from the 8 x 8 input array were quite acceptable, but some bias

is evident in the first quadrant estimate which is carried over to the CQ estimate.

The estimates obtained from the 4 x 4 array demonstrate the value of computing the

CQ estimate. In this case the true signal frequencies were unrecognizable until the

combined quadrant estimate was obtained.

A final test of the pre-windowed algorithm consisted of running the

filter mask only half way through an 8 x 8 input. The estimates are computed from

the upper 4 x 8 section of the observed data. The result of this experiment is given in

Figure 5.7. These results are similar to that of the 4 x 4 case and serve to reinforce the
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Figure 5.6: 4 x 4 input array (pre-windowed), SNR=1O dB.
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Figure 5.7: 4 x 8 portion of the input array (pre-windowed), SNR=10 dB.
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importance of the Combined Quadrant technique for 2-D AR spectrum estimation.

b. Estimates using the Covariance Method

As explained in section B of Chapter II the covariance method uses

only the observed data. As a result, P - 1 rows and columns of the input array are

not available when computing the parameter estimates. However, the experimental

results obtained in this work indicate that the covariance method achieves better

spectral peak resolution. Additionally, less bias is observed in the spectral estimates.

This characteristic of the covariance method is evident in Fig 5.8. In this case the

Mo 0dli#a* ld 0.edroat C OvbIn adr...L

- 20--.. -

.1 SL SL B 33 3

0 .5-S I, I's 20 .1s o 00 5' zS 3520

P1 Pl F1

Figure 5.8: 8 x 8 input array (Covariance Method), SNR=10 dB.

best spectral estimate is clearly provided by the Combined Quadrant method. The

bias present in the pre-windowed first quadrant support example has been completely

eliminated by using the covariance method.
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The next example demonstrates a unique characteristic of the data-

adaptive iterative Toeplitz approximation algorithm. In this example the spectral

estimate is computed using a 3 x 3 filter mask with a 4 x 4 input array. This means

that only four elements of the input data are available to the filter to determine

the parameter estimates. This result is of particular interest because the correlation

matrix is actually rank deficient, and the problem cannot be solved by direct inversion.

Nevertheless, the iterative Toeplitz approximation method does provide a means to

compute the estimate. The results are given in Figure 5.9. Although the spectral

let 90.qs~t

l U --L i

As a fute eto h loihasga ihoferqece

N ' -- 38

FI '

Figure 5.9: 4 x 4 input array (Covariance Method), SNR---10 dB.

estimates for the first quadrant and Combined Quadrants are somewhat weak, the

second quadrant estimate exhibits remarkable resolution and accuracy.

As a further test of thle algorithm, a signal with offset frequencies
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fhl = 0.250, f 12 = 0.125, f21 = 0.300, and f 22 = 0.400 is generated and processed.

The spectral estimates resulting from the computed model parameters are plotted

in Figure 5.10. For this case, the best spectral estimate was obtained using first
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Figure 5.10: 8 x 8 input array, offset frequencies, (Covariance Method),
SNR=10 dB.

quadrant suppport.

The spectral estimates for a signal-to-noise ratio of 0 dB is ploted

in Figure 5.11. The accuracy of the estimates is noticeably degraded in this case.

However, a reasonable indication of the signaj frequency content can be seen when

the combined-quadrant method is used.

The final case using NSHP support is included for completeness. The

filter mask had dimensions P, = P2 = 4 and L 2 = -2. The parameters were estimated

for a 16 x 16 input array. The NSHP spectral estimate is plotted in Figure 5.12. The
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Figure 5.12: 16 x 16 input array (Covariance Method), SNR=1O dB; non-

symmetric half-plane support.
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resulting spectral estimate shown in Figure 5.12 is quite accurate, but this comes

at the cost of greater complexity for the filter. NSHP support may be used as an

alternative to combined-quadrant support in some cases.

C. SUMMARY

The data-adaptive iterative Toeplitz approximation algorithm has proven to

be a viable means for 2-D AR spectrum estimation. Numerous factors must be

considered when using this algorithm. In particular, the filter mask size should be

chosen to correspond to the model order of the signal being processed. Although

our overall experience has found that that CQ support produced the best results,

no region of support seemed to have a clear advantage over the others for all cases.

This indicates that the optimum region of support must be evaluated for the specific

application that the algorithm is implemented for.
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VI. RESTORATION OF IMAGES

A. OVERVIEW

The characteristics of typical images vary greatly from one region of the image

to the next. For example, a region of an image containing a crowd or a building may

have detailed variations in intensity, while another region representing the sky in the

background will be essentially uniform in intensity. Two-dimensional data-adaptive

filtering is particularly suited for processing data of this nature. The idea of adapting

the processing to the local characteristics of an image is advantageous for many image

processing applications, including image enhancement and restoration.

There are two approaches to adaptive signal processing. The first approach

involves adapting the filter output for each pixel. This is known as pixel-by-pixel

processing [Ref. 4]. In this scheme, the processing method is based on the local

characteristics of the image, degradation, and any other pertinent information -on-

tained in the pixel's neighborhood region. This approach offers the greatest degree

of flexiblity to the adaptive process, but has the highest computational complexity.

When a more computationally efficient method is desired, a second approach

known as subimage-by-subimage or block-by-block processing can be used [Ref. 4]. In

this approach, the image array is divided into subimages and space-invariant tech-

niques are used to process the data. This method can result in some discontinuities

being present in the processed image. The size of the subimages directly affects the

quality of the output image. The block-by-block method provides a faster means of

processing, however, and may be desirable in some applications.

In the next two sections of this chapter the data-adaptive Toeplitz approxima-
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tion algorithm is implemented in image noise cancellation and line enhancer modes.

For both of these applications the algorithm has been modified to perform pixel-by-

pixel processing.

B. IMAGE NOISE CANCELLATION

The usual method of finding the estimate of a signal in noise is to pass the

corrupted signal through a system that serves to suppress the noise while leaving

the desired signal relatively unchanged. The noise canceler developed by Widrow

[Ref. 141 is an example of such a system. Adaptive noise cancellation is a variation

of optimal filtering that can be used for image restoration to some advantage. In

particular, when a recieved image is obscured by noise or another image transmitted

from another location as shown in Figure 6.1, an adaptive noise canceler can be

employed to extract the desired image from the composite signal. The noise canceler

unwanted transmission

reference sensor

UNITN i~~.. ....... .-- .......

desired transmission primary sensor

Figure 6.1: A possible scenario for application of a noise canceler as used
for image restoration.

makes use of an auxiliary or reference input derived from one or more sensors located
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at points in the noise field where the desired signal is weak or undetectable. This

input is filtered and subtracted from the primary input containing both desired and

unwanted signals. A block diagram of the noise canceler is shown in Figure 6.2. The

reference signal and the undesired part of the primary input are correlated. For this

reason, the unwanted signal or noise is eliminated or attenuated by cancellation.

PRIMARY SENSOR

Figure 6.2: Adaptive Noise Canceler Block Diagram.

To evaluate the performance of the data-adaptive iterative Toeplitz approxi-

mation algorithm used in a noise canceler configuration, a 256 x 256 composite im-

age array was created from two distinct images. This corrupted image is shown in

Figure 6.3. The algorithm described in Chapter IV was modified to include a cross-

correlation term given by

r. = Ar._, + (-!) d.x. (6.1)

where d. is the element of the composite signal corresponding to the nih element of

the reference signal being processed by the filter. This cross-correlation term is used

to form the initial parameter estimate for each pixel being processed.
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Figure 6.3: Corrupted image array provided as primary input to noise
canceler.

The resulting error e(n 1 , n 2) computed at the output of the system becomes the

restored image. This relationship is given by

e(n 1 , n 2) = [d(n 1, n 2 ) + u(ni, n 2)] - fi(ni, n2 ) , (6.2)

where d is the desired image, u is the unwanted image or noise and fi is the filtered

estimate of u.

In the simulation the noise signal added to the desired image is scaled and

lowpass filtered to simulate the effect of having the primary and reference sensors

physically separated. The output of the noise canceler is shown in Figure 6.4. The

unwanted image has been noticeably attenuated and the desired image is clearly

visible. The original images are provided in Figure 6.5 as a reference for evaluation

of the algorithm's performance.

C. ADAPTIVE LINE ENHANCER

A special case of adaptive noise canceling occurs when only the signal that is

corrupted by noise is available. In this case the recieved signal is delayed and used as

the reference signal. The reference signal may be expressed as y(n1 , n2) = x(nj-6, n 2),

where 6 is the amount of spatial delay used. The block diagram for this system is
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Figure 6.4: Processed image array after noise cancellation.

1~

Figure 6.5: The original images - undesired and desired.

46



shown in Figure 6.6. The main function of the delay parameter 6 is to remove any

...... ... OUTPUT

Figure 6.6: The adaptive line enhancer block diagram.

correlation that may exist between the noise component in the original input signal

and the noise component of the delayed adaptive filter input [Ref. 10]. The filter will

respond by cancelling any components of the main signal x(n1 ,n 2 ) that are in any

way correlated with the secondary signal y(nl,n 2) [Ref. 11]. The remaining noise

component at the output of the filter is then subtracted from main signal resulting

in the removal of the additive noise in the signal. In general, the delay 6 should

be chosen such that it is approximately half the length of the correlation sequence

[Ref. 11]. The input image and output of the adaptive line enhancer are shown in

Figure 6.7.

D. SUMMARY

In this chapter, it has been demonstrated that the data adaptive Toeplitz ap-

proximation algorithm may be used in image processing applications. While pixel-by-

pixel processing was used in the above examples, it may be desirable to combine this
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Figure 6.7: Input and output of the data-adaptive line enhancer.

approach with block-by-block processing to obtain better results. This would entail

dividing the image into smaller blocks before processing and then recombining the

processed blocks. Additionally, reprocessing of the array estimates may be a viable

means of improving image quality.
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VII. CONCLUSIONS

The data-adaptive iterative Toeplitz approximation algorithm is readily im-

plemented from the iterative methods previously used for fixed data-arrays. The

experimental results indicate that this algorithm is well-suited for a wide variety of

2-D signal processing applications. Practically speaking, the iterative method can

be successfully implemented for any application where the use of Wiener filter based

adaptive filters has been successful. While more extensive evaluation is necessary

before this method can be said to have a clear advantage over other methods, there

is enough evidence of its capabilities to warrant further investigation in this area.

A. PERFORMANCE EVALUATION SUMMARY

As stated earlier, autoregressive model parameters may used to estimate the

spectral content of 2-D arrays with high resolution. In experiments the performance

of the data-adaptive iterative algorithm matched that of the direct inversion method,

and in some cases, improved upon the performance of the fixed data iterative method.

This improvement may be due to the way in which the iteration is carried out in the

adaptive case versus the fixed case. In the fixed case the iteration is carried out using

a correlation matrix formed from all the data at once. In the data-adaptive case the

correlation matrix is formed recursively with new data incorporated at each itera-

tion. Of particular note, was the ability of the data-adaptive algorithm to estimate

frequencies using very small data sets and its ability to produce an estimate even

when the correlation matrix is not of full rank . Additionally, its performance in a

high noise environment was noteworthy.

The algorithm also proved to be a viable method for data-adaptive image
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restoration. The nature of this application differs greatly from that of spectral estima-

tion in that the data sets are much larger and generally less correlated. Encouraging

results were obtained for the data-adaptive noise canceler and line enhancer with only

minor modifications of the same algorithm that was used for the spectrum estimates.

B. RECOMMENDATIONS FOR FUTURE STUDY

The primary objective of this thesis was to develop the data-adaptive iterative

Toeplitz algorithm and obtain experimental results to evaluate its potential for use in A

applications that involve 2-D AR parameter estimation. There axe many aspects re-

garding this work that require more in-depth study and several applications that may

benefit in the use of this algorithm. In particular, more detailed analysis of model

orders and their relation to the algorithm's ability to form spectral estimates from

very small input arrays needs to be carried out. The use of singular value decompo-

sition (SVD) and eigenvalue analysis of the observed data may provide some insights

regarding the performance of the iterative algorithm. Also, further investigation as to

why one region of support (ROS) provides greater resolution than another, may yield

information that would permit the choice of an optimum ROS prior to processing

the data. Further analysis for choosing values of the forgetting factor A and how it

relates to the statistical nature of the data, is desirable as well. This may lead to a

scheme for on-line adjustment of A, which would be particularly advantageous when

processing images. Other future work could explore the use of different data win-

dowing schemes and data-ordering schemes for passing the filter mask over the data.

One possible method that has not been investigated is an expanding square starting

at one comer of the array. This method seems well suited for block-by-block image

processing. Finally, the data-adaptive iterative Toeplitz approximation algorithm has

the potential for use in non-linear applications, such as the identification of Volterra
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